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In this expository paper, we discuss some recent results in the theory of
adjoint semigroups.

INTRODUCTION
A Cy-semigroup of linear operators on a Banach space X is a family T =
{T'(t)}+>0 of bounded linear operators on X which satisfies

(S} T(0) = I;
[(S2)] T(s)T(t) =T(s+t) for all s,t > 0.
[(S3)] ltilr{)l |IT(t)z —z|| =0 for all z € X.

The generator of T is the linear operator A with domain D(A) defined by
D(A) ={z e X: ltif{)l 1(T(t)w — x) exists};

Az = lifn 1(T(t)z —z), =€ D(A).
t10
One of the motivations to study Cp-semigroups stems from the theory of (par-
tial) differential equations. The reason is not hard to see: for « € D(A), the
map u(t) = T'(t)x is the unique C'-solution of the initial value problem

du
E(t) = Au(t), t> 07 (0].)

u(0) = a.

By a C'-solution we mean a continuously differentiable map u : [0,00) — X
satisfying equation (0.1); differentiation is with respect to the norm of X. In
fact, generators of Cy-semigroups are characterized by this property as follows.
Let A be a densely defined linear operator on a Banach space X and assume
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that the resolvent set of A is not empty. Then the problem (0.1) has a unique
C'-solution for every * € D(A) if and only if A is the generator of a Cp-
semigroup. In that case, the solution is given by u(t) = T'(¢t)z.

For example, if A € M,(C™) is an n X n matrix, then the solution to the
initial value problem

du
E(t) = Au(t), t>0,

u(0) =,

where z € C", is given by u(t) = e!4x. Clearly, T(t) = et is a Cyp-semigroup
with generator A on the Banach space X = C".

As a second example, let X = Cy(IR), the Banach space of complex-valued
continuous functions on IR with the sup-norm, and consider the family T de-
fined by

T(t)f(s)=f(s+t), [fe€Co(R),s€R,t>0.

One easily verifies that T is a Cg-semigroup on Cp(IR), the so-called translation
semigroup. Its generator A is given by

D(A) ={f e G(R)NC'(R) : ' € Co(R)};
Af =f', feD(A).

In this example, for initial values f € D(A), the semigroup T is related to the
solutions u of the partial differential equation

ou ou
a(t,s) —g(t,s), SEIR,t>O,

u(O,) =/

by the relation u(t,-) = T'(¢)f. By writing it in the form (0.1), equation (0.2)
can be regarded as an equation on the Banach space X = Cy(IR).

As a third example, we mention the fact that the Laplacian A generates a
Cyp-semigroup on X = Cp(IR). In a similar way it corresponds to the solutions
of the heat-equation

(0.2)

%(t,s) = Au(t,s), s€R,t>0,

and again, this equation can be regarded as a special case of (0.1).

Let T be a Cy-semigroup on X. The adjoint semigroup is the family T* =
{T*(t)}+>0 of operators on the dual space X* defined by T*(t) := (T'(¢))*,
t > 0. The abstract properties of the adjoint semigroup were first studied by
PHILLIPS[14] and DE LEEUW[7]. Only in recent years, the interest for adjoint
semigroups became more widespread, after useful applications were found in
several fields. For example, Amann used adjoint semigroup techniques to prove
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that certain second order elliptic operators generate analytic semigroups in
L'(Q). Also, adjoint semigroups proved to be a useful tool in studying certain
delay equations and approximation problems. Through the work of CLEMENT,
DIEKMANN, HEJMANS, GYLLENBERG and THIEME [3] it was realized that
certain perturbation problems arising in population dynamics have a natural
functional analytic setting in terms of adjoint semigroups.

As the latter work is the main motivation for the recent interest in adjoint
semigroups, let us describe its heuristics in more detail. Consider a population
whose individuals are parametrized by their age. More precisely, for each time
t, we have a function n(t,-) € L*[0, amax) describing the age-distribution of the
population; here apyax is the maximal age the individuals can attain. Thus, at
time ¢, the number of individuals whose age is between a¢ and ag + € is given

by
apg+e
/ n(t,a) da.

aop

The fact that the state space is L'[0, amax) reflects the assumption that the
total population size is finite at each time. If no new births occur and no
individuals die before the age amax, the function n satisfies the relation

n(t,a—e€), a—e>0,
n(t+e,a) = {
0, a—e<O.
Let ng = n(0,-) € L'[0, amax) be the age-distribution at time ¢ = 0. Defining
T by
(T(t)n[))(a) = TL(t, a)a (03)
one easily verifies that T is a Cyp-semigroup in L'[0, amax) With generator A
given by
D(A) = {f € AC|0, amax) : £(0) = 0}
and Af = —f'. Note that the derivative exists a.e. and defines an L!-function,
f being absolutely continuous. This semigroup corresponds to the partial dif-
ferential equation

E(tva) = _%(tva)a ac [Oaamax), t > 07

n(0,-) = ng.

If we now assume that the individuals reproduce at an age-dependent rate
B(-) € L*®[0, amax ), the equation governing the population becomes

on on

E(taa) = _%(La)a
n = - a)n(t,a) da (0.4)
0) = [ Bayn(t.a) do.
n(0,-) = ny.

141



Thus, one can think of the births as a perturbation of the boundary condition
at a = 0.

If we try to rewrite equation (0.4) as an ordinary differential equation in the
Banach space X = L![0, amax), we run into the difficulty of how to deal with the
boundary condition, as ordinary differential equations do not have boundary
conditions. But thinking of L'-functions as (absolutely continuous) measures,
we can identify n(t,-) € L'[0, max) With the measure N(t) € M0, amay) Whose
density is n(t,-). Then, at least formally, we can rewrite (0.4) as

T = AW@)+ ([ b dv ) @) o

N(0) = No,

(0.5)

where the derivative is, e.g., the weak*-derivative of the measure-valued func-
tion N(-), Ao is the Radon-Nikodym derivative, and 8y is the Dirac mea-
sure concentrated at a = 0. In this way we can interpret equation (0.5) as
an equation in the Banach space M[0,amax) of bounded Borel measures on
[0, @max). The perturbation caused by birth becomes an additive perturbation
by a bounded linear operator By : L'[0, @max) — M [0, amax), given by

Byf = (/Om B(a)f(a) da) do.

In order to deal with equation (0.5) in a rigorous setting of semigroups T on
some Banach space X, one needs a perturbation theory in which perturbations
are allowed to be of the form B : X — Y, where Y is some ‘larger’ Banach space
containing X as a subspace. Precisely this can be done by means of adjoint
semigroup theory. It turns out that a perturbation theory can be constructed
for the case Y = X©X. This is a space that can be canonically constructed by
means of duality from the pair (X, T); the precise definition is given in Section
4. For the above semigroup on X = L'[0, @max) we have XOX = M0, amax),
so this example indeed fits into that theory.

The relation to adjoint semigroup theory becomes even more apparent if one
considers the equation dual to (0.4), which is

om om
-7 (1ha) = ——(t,a) + B(a)m(t,0),
m(t, amax) = 0’ (06)

m(0,-) = my.

The perturbation by births now appears as a ‘genuine’ additive perturbation.
The proper state space for this problem is Cy[0, amax), the space of continuous
functions on [0, amax) vanishing at @ = apmax (the deeper reason for this is that
this space is the ®-dual X® of X = L'[0, amax). The Cp-semigroup associated
to equation (0.6) is T®, the ®-adjoint of T; cf. Section 1). The boundary
condition m(t, @max) = 0 is then built into the state space. Analogously to what
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we did in (0.5), we now think of Cj[0, amax) as embedded in the larger space
L>®[0, amax), and regard the birth perturbation as an additive perturbation by
the bounded linear operator

Bl : CO[O;amax) - Loo[oaamax)a Blf = f(O)ﬂ

(recall our assumption 3 € L*®[0, amax))-

The dual equation fits into the ® xX-perturbation theory equally well, because
for the semigroup T® on X© = Cy[0, amax) we have (X©)©X = L>®[0, amax)
(= X*, cf. Theorem 4.3).

Thus, it was recognized that problems of the type discussed above can be
succesfully dealt with in an abstract framework of adjoint semigroup theory.
These applications also caused a renewed interest for the abstract functional
analysis of adjoint semigroups. Many new results were proved by, e.g., DE
PAGTER, GRABOSCH and NAGEL, GREINER, SCHEP and the author [5, 6, 9,
10, 11, 13]. It was found that adjoint semigroups are interesting objects in their
own right and that much can be said about them by using results and methods
from Banach space theory.

In this note, we will mainly deal with the abstract theory and highlight
some of its most interesting results. We return to the above example only in
Section 4. For further details about the application of adjoint semigroups to
age-dependent populations we refer to [3].

Most proofs of the results presented here and further results can be found
in [9], which is based on my Ph.D. thesis prepared at the CWI in Amsterdam.
I would like to thank my colleagues, especially Hans Heesterbeek and my su-
pervisor Odo Diekmann, for making it such a wonderful place to work. Also, I
would like to thank Ben de Pagter for his constant interest and encouragement.

1. STRONG CONTINUITY OF THE ADJOINT SEMIGROUP
It is immediate to verify that the adjoint semigroup T* has properties (S1) and
(S2). Property (S3), strong continuity, need not hold, however.

EXAMPLE 1.1.

(i) Let T be the translation semigroup on X = Cp(IR) as defined in the
introduction. Its adjoint on X* = M(IR), the space of bounded Borel
measures on IR, is given by (T™*(t)u)(F') = pu(F —t).

(i) Let T be the semigroup on X = L]0, amay) defined in equation (0.3).
Then for f € X* = L*°[0, dmax) one has

(T*(t)f)(a) = {
0, a+1> amax-

Consider the semigroup in Example 1.1 (i) and let p be a Dirac measure
8. Then it is clear that lim g || 7*(¢)6 — 6|| = 2. Thus, T* fails to be strongly
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continuous. In fact, limy)o ||[7*(t)p — p|| = 0 if and only if p is absolutely
continuous with respect to the Lebesgue measure.
We are led to the following definition:

X9 = {z* e X*: ltilr{)l |T*(t)a™ — || = 0}.

Thus, X© is precisely the subspace of X* on which the action of T* is strongly
continuous. It is easy to see that X© is a closed, T*-invariant subspace. The
restricted semigroup T defined by T®(t) := T*(t)|xo is a Cy-semigroup on
X©. Starting from this semigroup, we can repeat this procedure and define
XO* X0 and T®* and T®®. The generators of T® and T®® will be denoted
by A® and A®©® repectively.

The natural map j : X — X©* defined by

(j:v,:v®>:: <:U®,I>, :UQ EX@:

can be shown to be an embedding. Thus one can identify X isomorphically
with a closed subspace of X®*. The map j need not be isometric; cf. Example
1.6 below. If X = X©© then we say that X is @-reflexive with respect to
T. Trivially, if X is reflexive, then it is ®-reflexive with respect to every Cjy-
semigroup. The following characterization of ®-reflexivity is due to de PAGTER
[12] and improves an earlier result of HILLE and PHILLIPS.

THEOREM 1.2. X is @-reflexive with respect to T if and only if the resolvent
R(A\ A) = (XA — A)~! is weakly compact for some \ € o(A).

ExaMpPLE 1.3. Here are some easy examples.
(i) Let X = Cp(IR) and T translation. Then X© consists of all finite Borel

measures on IR which are absolutely continuous with the Lebesgue mea-
sure. Hence, by the Radon-Nikodym theorem, we can identify X© with
L'(IR). Furthermore, one has X®® = BUC(IR), the space of all bounded,
uniformly continuous functions on IR. Thus, X is not ®-reflexive with
respect to T.

Similarly, one can consider rotation on X = C(T"), T being the unit circle.
One has X® = L!(T") and, due to the compactness of I, X©© = C(I).
So in this case, X is ®-reflexive with respect to T. This can also be seen
directly from the fact that the resolvent (A —d/df) ! is compact for each
A>0.

(ii) Let T be defined on X = L'[0,amax) by equation (0.3). Then X© =
Col0, amax) and X©© = X = L'[0,amax). Thus, X is @-reflexive with
respect to T; this depends on the fact that we assume apax < 0o. In the
case Gmax = 00, the space Ll[O,amaX) is not ®-reflexive with respect to
T.

(iii) Let X be a Banach space with a Schauder basis {z,}52, and define T
by T(t)z, = e ™z,. Then T is a Cp-semigroup on X. Let {z}}>2,
be the coordinate functionals corresponding to this basis, i.e., z), is the
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(bounded) functional defined by (z%, > p° | arzr) = a,. The space X© is
precisely the closed linear span of {z:}5 ; in X*. In particular, {3},
is a Schauder basis for X© and we have T®(t)z} = e ™x}. Therefore,
X©9 is precisely the closure of the coordinate functionals of this basis,
which are given by {z,}52,. It follows that X is ®@-reflexive with respect

to T.
(iv) If X is ®-reflexive with respect to T, then X © is @-reflexive with respect
to TO. L]

Although T* need not be strongly continuous, the inequality
(T (t)z" — o™, z)| < |27 |T(t)z — =]

shows that T* is weak*-continuous. Hence, if X is a reflexive Banach space,
then T is weakly continuous. By a standard theorem of semigroup theory,
weakly continuous semigroups are strongly continuous, and we obtain the fol-
lowing classical result due to PHILLIPS [14]:

THEOREM 1.4. If T is a Cy-semigroup on a reflexive Banach space, then
X0 =X*.

Another, more elementary proof of Theorem 1.4 is as follows: first one proves
that X© = D(A*), where A* is the adjoint of the generator A. Since A is always
densely defined and closed, D(A*) and hence also X© is weak*-dense in X*.
Thus, by reflexivity, X© is weakly dense. But X© is also norm-closed, hence
weakly closed, and therefore X© = X*,

The converse of Theorem 1.4 is false: there are non-reflexive Banach spaces
on which the adjoint of every Cj-semigroup is strongly continuous. In fact,
there is a well-known theorem of Lotz [Lo] that every Cp-semigroup on L*[0, 1]
is uniformly continuous, i.e. limy g || T'(¢) —I|| = 0. Of course, the adjoint of such
a semigroup is uniformly continuous as well, and hence strongly continuous.
However, if X is a non-reflexive Banach space with a Schauder basis, then there
exists a Cp-semigroup on X whose adjoint fails to be strongly continuous. In
fact, X has a (probably different) Schauder basis whose coordinate functionals
span a proper closed subspace of X*. Thus, for a large class of spaces, reflexivity
is the only sufficient criterion that guarantees X©® = X*. For special classes
of Banach spaces or semigroups sometimes more can be said, however. An
example is the following theorem about ¢y, the Banach space of all scalar
sequences which converge to 0 with the sup-norm.

THEOREM 1.5. Let T be a Cy-semigroup on co. If there exist M < 2 and
w € R such that |T(t)|| < Me“t for all t > 0, then c§ = cj.

It is an easy consequence of the uniform boundedness theorem and the semi-
group property (S2) that for every Cp-semigroup T there are constants M > 1
and w € IR such that ||7(¢t)]| < Me*! for all t > 0. The point of the theorem
is that M should be less than 2. The constant 2 is optimal, as is shown by the
following example, which is also useful for the discussion in the next section.
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EXAMPLE 1.6. Let x,, be the nth unit vector of ¢y and put y,, = 22:1 Tr.
The sequence {y, }32; can be shown to be a Schauder basis for ¢y. The formula
T (t)y, = e ™y, then defines a Cp-semigroup on ¢y satisfying |T'(¢)|| < 2 for
all t. Moreover, c[? is the closed linear span of the coordinate functionals of
{yn}22,, which is a co-dimension one subspace of cj. "

This semigroup has the further pathological property that the natural map
jicy — coe* fails to be isometric. In general, it is an easy consequence of the
bipolar theorem that j : X — X©* is isometric if and only if the closed unit
ball Bx of X is closed in the weak topology induced by X©. In the above

—0c co,ce
example, one can show directly that (2,0,0,0,....) € B, (oo ).

2. THE CO-DIMENSION OF X© IN X*

Knowing that X© can be a proper subspace of X*, the question arises what can
be said about its ‘relative size’ in X*. We noted already in the introduction
that X© is weak*-dense in X*, but with respect to the norm-topology the
situation is far more subtle. In that case, the natural object of study is the
size of the quotient space X*/X®. We start with noting that there is a nice
description of the quotient norm of X*/X®. Let ¢ : X* — X*/X© be the
quotient map.

THEOREM 2.1. Let T be a Cy-semigroup on a Banach space X. Then

llgz™ || = lim sup || T*(t)z* — 2™ ||
10

defines an equivalent norm on X*/X©.

Example 1.6 seems to indicate that not very much can be said about the
size of X*/X©. Indeed, for the semigroup there one has dim ca/c()@ =1, and
by taking direct sums it is possible to construct semigroups for which X*/X©
can have any finite dimension. Let us analyse this example more closely. The
adjoint semigroup is easily seen to be strongly continuous for ¢ > 0. This is
equivalent to saying that T*(t)z* € cS) for every t > 0 and z* € I'. Letting
q:cy — cf;/c(()D be the quotient map, this is in turn equivalent to saying that
q(T*(t)z*) =0 for all t > 0 and z* € I*.

On X*/X©, there is a natural quotient semigroup T, (t), defined by T, (t)gz* =
q(T*(t)z*). Thus, in the above example, all orbits of T (t) are zero for t > 0.
This is a special case of the following result. We say that a Banach space valued
function is separably valued if its range is contained in some separable subspace.

THEOREM 2.2. Let T be a Cy-semigroup on a Banach space X and let x* €
X*. If the orbit t — T4(t)gz* is separably-valued, then Ty(t)gx* = 0 for all
t>0.

This theorem implies that non-zero orbits of the quotient semigroup cannot
be strongly continuous. An elementary proof of this is given in [10].
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COROLLARY 2.3. If T extends to a Cy-group, then X*/X® is either zero or
non-separable.

Indeed, if X*/X© is separable, then T* is strongly continuous for ¢ > 0 by
Theorem 2.2, and since T extends to a group, this implies that T* is strongly
continuous for all £, i.e. X© = X*,

Let us make a few comments on the proof of Corollary 2.3 (Theorem 2.3
can be proved in a similar way by refining the argument a little bit). So let
us assume that X*/X© is separable. It is a well-known fact that a strongly
measurable semigroup is strongly continuous for ¢ > 0. Therefore the idea is to
try to use the Pettis measurability theorem: if (2, X, 1) is a o-finite measure
space and f : 0 — X is a weakly measurable, separably valued map into the
Banach space X, then f is strongly measurable. Now let us look at a quotient
orbit ¢t +— T,(t)gz*. Since we assume that it is separably valued, the strategy is
to try to prove some kind of weak measurability property. By using the tool of
so-called Baire-1 functionals, this can indeed be done after changing to a weaker
norm (in which the completion of X*/X© is again separable). Recall that a
functional z** € X** is called Baire-1 if it is the weak*-limit of a sequence of
elements in X. The idea is to construct sufficiently many Baire-1 functionals
in the annihilator X®+ of X©. Identifying X®+ with (X*/X®)*, the quotient
semigroup on X*/X© is measurable with respect to any such functional. One
obtains that in the norm induced by these functionals, the quotient orbit is
weakly measurable, hence strongly measurable by Pettis’s theorem, and hence
strongly continuous for ¢ > 0.

The second difficulty is to show that Tj(t)gz* = 0 for ¢ > 0. The idea is to
turn to the dual space of X*/X© and to show that (I} (t)z®+,gz*) = 0 for
each of the Baire-1 functionals z®+ discussed above. The proof of this is based
on the fact that there is a natural isomorphism

Xoo X990 (X*/X9)9,

where X is the space of strong continuity of the bi-adjoint semigroup {T**
(t)}+>0 on X** and (X*/X®)® is the space of strong continuity of the adjoint
of the quotient semigroup.

In this way one is led to the question in how far X©© and X ¢ can differ. The
point is that, a priori, the space (X*/X®)® could be zero, since the quotient
semigroup on X*/X® is not a Cyp-semigroup. There are indeed examples where
this happens; for instance if T* is strongly continuous for ¢ > 0. More generally,
one can prove that this happens if each of the orbits t — T™*(¢t)x* is locally Pettis
integrable. It is a result of this type that finally leads to Theorem 2.2.

By Theorem 3.3 below, an example of a semigroup for which X®© is a proper
subspace of X is the translation group on X = Cp(IR).

3. THE ADJOINT OF A POSITIVE SEMIGROUP

Many semigroups encountered in applications are positive, i.e. they map posi-
tive elements to positive elements. Throughout this section, we assume that T
is a positive Cy-semigroup on a Banach lattice F.
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It is for this class of semigroups for which the most detailed abstract results
have been obtained. We refer the reader to [5], [9], [10], [11] and [13] for more
details. One of the interesting discoveries was that several results concerning
the behaviour of Borel measures on IR can be generalized to results about the
adjoints of positive Cy-semigroups on Banach lattices. We will deal with these
results below.

The first question we address is whether E® has some nice lattice properties
if T does. For example, one might hope that E® is a sublattice if T is positive.
This was an open problem for some time and was finally solved to the negative
by GRABOSCH and NAGEL [5], who constructed the following counterexample.

ExampLE 3.1.  Let E := L'[0,1] x L'[0,1] with norm ||(£, )| := || fIl + |lg]|-
Consider the operator
_(d/dz O
A= < 0 d/dz)
with domain

by ={(£) er: nyeacon, (10)=5(10))

Here ACI0,1] denotes the linear space of all absolutely continuous functions
on [0,1], and B is a real 2 x 2 matrix. The operator A generates a positive
Cy-semigroup on F. One can show that

E® = {(j;) e C[0,1] x C[0,1] : (f;ig;) — B (f;g;)}

It follows that E® is a sublattice of C0,1] x C]0,1], and hence of E*, if and
only if B is a lattice homomorphism on IR?. This is the case if and only if B
is a positive diagonal- or off-diagonal matrix. In fact, in this example, E® is a
Banach lattice with respect to its own ordering if and only it is a sublattice of
E*, so in general E® need not even be a Banach lattice in its own right. m

On Banach lattices which are ‘sufficiently different’ from L!-spaces, one has
the following positive result.

THEOREM 3.2. Let T be a positive Cy-semigroup on a Banach lattice E. If
E* has order continuous norm, then E© is a projection band in E*.

Examples of spaces whose duals have order continuous norm are the space
of continuous functions C'(K) and Cy(€2). One can say more about adjoints of
positive semigroups on C(K):

THEOREM 3.3. Let T be a positive Cy-semigroup on E = C(K), K compact
Hausdorff. Then the following are equivalent:

(i) t — T*(t)z* is weakly Borel measurable for each z* € E*;
(i) T* is strongly continuous for t > 0;
(ZZZ) E®® == E@@.
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In particular, if T extends to a Cy-group, then T* is weakly Borel measurable
if and only if T* is strongly continuous. Theorem 3.3 is non-trivial; it depends
on a deep result result of Riddle, Saab and Uhl that a weakly Borel measurable
map taking values in the dual of a separable Banach space is Pettis integrable.
One might wonder whether weak (i.e. weak Lebesgue) measurability already
implies strong continuity for ¢ > 0. Under certain set-theoretical assumptions,
this is true, but it is an open question whether this can be proved directly.

Also non-trivial is the following beautiful result of Talagrand [15], which is
an orbit-wise analogue of Theorem 3.3 for the case E = L!(T).

THEOREM 3.4. Let T be the rotation group on L*(T), T' the unit circle. If
for some f € L>°(T") the orbit t — T*(t)f is weakly measurable, then f is equal
a.e. to a Riemann measurable function.

Recall that an (everywhere defined) function is Riemann measurable if it
is continuous a.e. Assuming Martin’s Axiom (MA), the following orbitwise
generalization of Theorem 3.3 can be proved [11]:

THEOREM 3.5 (MA). LetT be a positive Cy-semigroup on a Banach lattice E.
If, for some x* € X*, the map t — T*(t)x* is weakly measurable, thenT™(t)z*
belongs to the band generated by E© for all t > 0. If T* is a lattice semigroup,
in particular if T extends to a positive group, then x* itself belongs to this band
as well.

We recall the fact that Martin’s Axiom is implied by (but does not imply)
the Continuum Hypothesis. Applied to the group of translations on Cy(IR),
Theorem 3.5 implies that translation of a bounded Borel measure p on IR is
weakly measurable if and only if u is absolutely continuous with respect to the
Lebesgue measure (in which case translation of u is strongly continuous).

After these ‘weak implies strong’ results, we turn to the lattice properties of
individual orbits of T*. The most interesting results are concerned with the
behaviour of elements in E* which are disjoint from E®.

THEOREM 3.6. Let T be a positive Cy-semigroup on a Banach lattice E.

Suppose that either E has a quasi-interior point of E* has order continuous
norm. If z* 1 E® then T*(t)z* L x* for almost all t > 0.

Recall that w € E is a quasi-interior point if the ideal generated by u is
norm dense in F. Every separable Banach lattice and every L°°-space have
quasi-interior points. In the special case where T is the translation group on
E = Cy(R), we have p L E® = L'(IR) if and only if p is singular with
respect to the Lebesgue measure (Example 1.1), and the theorem reduces to
the classical theorem of Wiener and Young [WY] that a singular measure on
IR is disjoint to almost all of its translates.

THEOREM 3.7. Let T be a positive Cy-semigroup on a Banach lattice E. If
z* L E®, then
lim sup [T (o — o] > 2"
t10
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In the case E = C(K), this follows easily from Theorem 3.6: E© is a pro-
jection band in M(K), hence lattice isometric to some L!-space. If in an
L'-space we have T*(t)z* L z*, then ||T*(t)x* —x*|| = || T*(t)z*|| + || T*(t)z* ||,
and by weak®-continuity it follows that lim sup, | [|7(¢)z*|| > ||z*||. However,
arbitrary dual Banach lattices do not have additive norm and, what is more,
Theorem 3.6 fails for arbitrary Banach lattices.

Our final result is concerned with multiplication semigroups. A Cy-semigroup
on a Banach lattice F is called a multiplication semigroup if each operator T
is a band preserving operator. The reason for this terminology is that in most
classical function spaces, an operator is band preserving if and only if it can be
represented as multiplication with some (continuous, measurable) function. If
T is a multiplication semigroup, then T is positive, E® is an ideal in E* and
T* is strongly continuous for ¢ > 0.

There are two trivial examples of ®-reflexive multiplication semigroups: those
on reflexive Banach lattices F, and multiplication semigroups of the form
T(t)z, = e *=tz,, where {,}2, is an unconditional Schauder basis for E
and (k,) is a sequence of real numbers which is bounded from below. Note
that in both cases, F has order continuous norm. The following theorem states
that these are essentially the only examples:

THEOREM 3.8. If E is ®-reflexive with respect to a multiplication semigroup
T, then E has order continuous norm. Furthermore, if E does not contain a
reflexive projection band, then E has an unconditional Schauder basis {x,}22
and T is of the form T(t)x, = e Frtx,, where (k,) is a sequence of real
numbers which is bounded from below.

In general, if F is ®-reflexive with respect to a positive Cy-semigroup T, then
FE need not have order continuous norm, even if T is disjointness preserving,
as is shown be the rotation group on C(T"). However, if a Banach space X is
®-reflexive with respect to a Cy-semigroup T, then X does not contain a closed
subspace isomorphic to [*°. Therefore, by the general theory of Banach lattices,
if a ®-reflexive E is 0-Dedekind complete, it must have order continuous norm.

4. THE SPACE X©%
In the introduction we were led to the study of initial value problems of the

type

du
u(0) ==

where A is the generator of a Cy-semigroup on a Banach space X and B : X —
Y is a perturbation taking its values in a Banach space Y containing X as a
closed subspace. In the particular case studied there we had X = L[0, apax)
and Y = M][0, amax). For the dual equation, we had X = Cy[0, amax) and
Y = L*®[0,amax). We already observed that, in both these cases, X is ®-
reflexive with respect to T and that the relation Y = X©X = X©* holds. In

150



this section, we show how equation (4.1) can be given a precise meaning and
how it can be solved by means of abstract methods.

We start with the introduction of the canonical space X©* associated with
a Cy-semigroup. This space is a closed subspace between X and X©*: we have
natural inclusions of closed subspaces X C X®* C X©*, We define X®* to
be the subspace of X ©* which is mapped into X by the adjoint of the resolvent
of T©:

XOX = {2 € XO* : R(\, A®)*2°* € X}.

The space X©* is a closed subspace of X®* It is an easy consequence of
the resolvent identity that X©* is independent of the choice of A € g(A4).
Obviously, if X is ®-reflexive with respect to T, then X®X = X©*,

THEOREM 4.1. Let T be a Cy-semigroup on X.

(i) If B: X — X©X is a bounded operator, then the part of A°* + B in X
generates a Cy-semigroup U on X. Moreover, we have

U@ =T@®|=0(@), tl0. (4.2)

(i) Conversely, if U and T are two Cy-semigroups on X such that (4.2)
holds, then these semigroups have the same space X©*, and there exists
a bounded operator B : X — X©X such that the generator Ayg s precisely
the part of A%* + B in X.

Moreover, if A is a generator and B : X — X©* is bounded, then the part
of A®* 4+ B generates a Cy-semigroup on X if and only if B takes its values in
X ©X_ These results are essentially contained in [3, Part I] and [4].

Assertion (i) shows how equation (4.1) can be given a meaning: the ‘correct’
initial value problem is

du

—(t) = A°*u+ B

A w (4.3)
u(0) = x.

A priori, this equation makes sense as an equation in the space X©*. But
thanks to Theorem 4.1, the part of A®* + B in X is the generator of a Cp-
semigroup U on X. Thus, for z in the domain of this part, we can regard
equation (4.3) as an initial value problem on X, the solution of which is given by
u(t) = U(t)z. In the concrete example on X = L'[0, amax) of the introduction,
we have 4y = A®9% and By : X — X©*_ Hence, the part of the operator Ay +
By in L0, amax) generates a Co-semigroup U on L'[0, amay). For initial values
n(0,-) in its domain, equation (0.4) admits the solution u(¢) = U(¢)n(0,-). The
dual equation can be dealt with analogously.

We will now continue with some further properties of the space X©* all of
which show that it truly is an important intrinsic object associated to X and
T, rather than just some ad hoc object.
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For the next result, we need the fact that there is a natural embedding
k:X®9 — X** given by

(kz®® z*) = )‘lim (x®9 AR(N, A*)z*).

The limit always exists, so this definition makes sense. By means of the map
k, each z0° € X©O acts as a bounded linear functional on X*. The following
example illustrates this in the case of the translation group.

EXAMPLE 4.2.  Let T be the translation group on X = Cp(IR). We know that
X©® = BUC(IR). One can verify by direct computation that for f € X©©
and a finite Borel measure y € X* we have

(kfop) = /m £(t) du(t),

where the integral is the abstract Lebesgue integral. Thus, we recover the
natural pairing of BUC(IR) with the space of finite Borel measures M (IR). =

The other way around, one can regard each * € X* as a bounded functional
on X®©, In doing so X* can be identified with a closed subspace of X©©* =
(X ©)®*. The following result tells us which subspace:

THEOREM 4.3. Under the above identifications, X* = (X©)©*,

Thus, the ®*-spaces occur ‘naturally’. Our final result gives one more strik-
ing example of a class of spaces which turn out to be ®*-spaces. To this end,
we briefly recall some concepts from interpolation theory. For the details, we
refer to [2]. Let T be a Cp-semigroup on X. For 0 < o <1 we define

X, :={z € X :limsup &||T(t)z — x| = 0};
t10

Xo,0o :={z € X :limsup &||T(t)z — x| < oo}.
t10

With respect to appropriately chosen norms, these spaces are Banach spaces,
which can be thought of as abstract little- and big H&lder spaces of exponent
a. Clearly, X, is T-invariant; the restriction of T defines a Cy-semigroup T,
on X,. For this semigroup we can prove:

THEOREM 4.4. There ezists a natural isomorphism Xo o0 ~ (Xo)®*.

In fact, if we let A, denote the generator of T, the isomorphism is given by
(A=A)R(X, AY)*|(x.)ox; this map does not depend on the choice of A € g(A).
For the specialists, this is why Theorem 4.4 works: one can show that X, o can
be identified with the so-called Favard class of the extrapolation space (X4)—1
of X,; on the other hand, for every Cj-semigroup on a Banach space X one
has Fav(X) = D(A®*) N X, so X®% is the inverse image under A®* of the
Favard class of X, and this implies that X®* can be identified with the Favard
class of X_;.

If X is ®-reflexive with respect to T, then one can show that X, is ®-reflexive
with respect to T,. In that case, Theorem 4.4 gives a natural isomorphism
Xa,oo (X4)®*; in other words, Xa,00 is a dual space in a natural way.
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